Cartilage Self - Heating Contributes to Chondrogenic Expression
نویسنده
چکیده
Articular cartilage is a soft tissue showing inelastic properties. Under cyclic loading, inelastic materials may dissipate mechanical energy into heat. In knee cartilage, due to an intrinsic reduced heat convection related to its avascularity, a local temperature increase could be observed. This phenomenon is referred to as self-heating. As cells are sensitive to temperature variation, the energy dissipation could influence their metabolism. The goal of this study was to evaluate the effect of cartilage self-heating on chondrogenic expression. In the first part of this study, using a custom-made deformation calorimeter, we quantified the heat generated in cartilage submitted to cyclic loading at different frequencies. We calculated the corresponding local increase of cartilage temperature. At the cellular level, we then assessed the effect of these temperature variations on chondro-progenitor cell metabolism by measuring the gene expression of transcription factors involved in chondrogenesis. An up-regulation in mRNA expression levels of Sox9 and its co-activator PGC-1α was observed with an increase of temperature. Taken together, the results of this study suggest a dissipation contribution to chondrogenic gene expression. Dissipation phenomena might then be considered as a new variable in mechanobiology.
منابع مشابه
Importance of Floating Chondrons in Cartilage Tissue Engineering
BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in compar...
متن کاملInduction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملStudy of chondrogenic potential of stem cells in co-culture with chondrons
Objective(s): Three-dimensional biomimetic scaffolds have widespread applications in biomedical tissue engineering due to similarity of their nanofibrous architecture to native extracellular matrix. Co-culture system has stimulatory effect on chondrogenesis of adult mesenchymal stem cells. This work presents a co-culture strategy using human articular chondrons and adipose-derived stem cells (A...
متن کاملComparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro
Objective(s): Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE) has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose d...
متن کاملUse of Mesenchymal Adult Stem Cell for Cartilage Regeneration by Hydrogel
Background and Aims: Cartilage is a very specific tissue, which does not have the capacity to heal and renew itself. Although the invention of the method of surgery with autologous chondrocyte transplantation, developed tools to treat the cartilage lesions, it couldn’t gain a great success due to problems such as damage to the area of donation. Using the mesenchymal stem cells derived from adip...
متن کامل